Comparative Study of Speech Recognition System Using Various Feature Extraction Techniques
نویسندگان
چکیده
It is very important to detect the speech endpoints accurately in speech recognition. This paper presents a comparative analysis of various feature extraction techniques of endpoint detection in speech recognition of isolated words in noisy environments. The endpoint detection problem is nontrivial for no stationary backgrounds where artifacts (i.e., no speech events) may be introduced by the speaker, the recording environment, and the transmission system. An optimum set of characteristics is identified by combining parameters from both time domain and frequency domain, in a robust approach for identification when the speech signal is corrupted by additive noise and channel distortion. The cases of colored noises such as babble noise, factory noise at different SNR values in conjunction with distortions due to recording medium were tested. Experimental results identify the optimal algorithm which significantly achieves the highest performance in the recognition task.
منابع مشابه
Speech Feature Extraction and Classification: A Comparative Review
This paper gives a brief survey on speech recognition and presents an overview for various techniques used at various stages of speech recognition systems. Researchers has been working in this research area for many years however accuracy for speech recognition still attention for variation of context, speaker’s variability, environment conditions .The development of speech recognition system r...
متن کاملA Comparative Study of Wavelet Based Feature Extraction Techniques in Recognizing Isolated Spoken Words
Speech is a natural mode of communication for people and speech recognition is an intensive area of research due to its versatile applications. This paper presents a comparative study of various feature extraction methods based on wavelets for recognizing isolated spoken words. Isolated words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition....
متن کاملMFCC and Prosodic Feature Extraction Techniques:
In this paper our main aim to provide the difference between cepstral and non-cepstral feature extraction techniques. Here we try to cover-up most of the comparative features of Mel Frequency Cepstral Coefficient and prosodic features. In speaker recognition, there are two type of techniques are available for feature extraction: Short-term features i.e. Mel Frequency Cepstral Coefficient (MFCC)...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کامل